Efficient Multiplication of Polynomials on Graphics Hardware
نویسنده
چکیده
We present the algorithm to multiply univariate polynomials with integer coefficients efficiently using the Number Theoretic transform (NTT) on Graphics Processing Units (GPU). The same approach can be used to multiply large integers encoded as polynomials. Our algorithm exploits fused multiply-add capabilities of the graphics hardware. NTT multiplications are executed in parallel for a set of distinct primes followed by reconstruction using the Chinese Remainder theorem (CRT) on the GPU. Our benchmarking experiences show the NTT multiplication performance up to 77 GMul/s. We compared our approach with CPU-based implementations of polynomial and large integer multiplication provided by NTL and GMP libraries.
منابع مشابه
Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملOn The Parallelization Of Integer Polynomial Multiplication
With the advent of hardware accelerator technologies, multi-core processors and GPUs, much effort for taking advantage of those architectures by designing parallel algorithms has been made. To achieve this goal, one needs to consider both algebraic complexity and parallelism, plus making efficient use of memory traffic, cache, and reducing overheads in the implementations. Polynomial multiplica...
متن کاملA Fast and Efficient On-Line Harmonics Elimination Pulse Width Modulation for Voltage Source Inverter Using Polynomials Curve Fittings
The paper proposes an algorithm to calculate the switching angles using harmonic elimination PWM (HEPWM) scheme for voltage source inverter. The algorithm is based on curve fittings of a certain polynomials functions. The resulting equations require only the addition and multiplication processes; therefore, it can be implemented efficiently on a microprocessor. An extensive angle error analysis...
متن کاملCache and Bandwidth Aware Matrix Multiplication on the GPU
Recent advances in the speed and programmability of consumer level graphics hardware has sparked a flurry of research that goes beyond the realm of image synthesis and computer graphics. We examine the use of the GPU (graphics processing unit) as a tool for scientific computing, by analyzing techniques for performing large matrix multiplies in GPU hardware. An earlier method for multiplying mat...
متن کاملA Novel and Efficient Hardware Implementation of Scalar Point Multiplier
A new and highly efficient architecture for elliptic curve scalar point multiplication is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical path...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009